Model-Based Time Series Classification
نویسندگان
چکیده
We propose MTSC, a filter-and-refine framework for time series Nearest Neighbor (NN) classification. Training time series belonging to certain classes are first modeled through Hidden Markov Models (HMMs). Given an unlabeled query, and at the filter step, we identify the top K models that have most likely produced the query. At the refine step, a distance measure is applied between the query and all training time series of the top K models. The query is then assigned with the class of the NN. In our experiments, we first evaluated the NN classification error rate of HMMs compared to three state-of-the-art distance measures on 45 time series datasets of the UCR archive, and showed that modeling time series with HMMs achieves lower error rates in 30 datasets and equal error rates in 4. Secondly, we compared MTSC with Cross Validation defined over the three measures on 33 datasets, and we observed that MTSC is at least as good as the competitor method in 23 datasets, while achieving competitive speedups, showing its effectiveness and efficiency.
منابع مشابه
Interpolating time series based on fuzzy cluster analysis problem
This study proposes the model for interpolating time series to use them to forecast effectively for future. This model is established based on the improved fuzzy clustering analysis problem, which is implemented by the Matlab procedure. The proposed model is illustrated by a data set and tested for many other datasets, especially for 3003 series in M3-Competition data. Comparing to the exist...
متن کاملRainfall-runoff process modeling using time series transfer function
Extended Abstract 1- Introduction Nowadays, forecasting and modeling the rainfall-runoff process is essential for planning and managing water resources. Rainfall-Runoff hydrologic models provide simplified characterizations of the real-world system. A wide range of rainfall-runoff models is currently used by researchers and experts. These models are mainly developed and applied for simulation...
متن کاملEnsemble Kernel Learning Model for Prediction of Time Series Based on the Support Vector Regression and Meta Heuristic Search
In this paper, a method for predicting time series is presented. Time series prediction is a process which predicted future system values based on information obtained from past and present data points. Time series prediction models are widely used in various fields of engineering, economics, etc. The main purpose of using different models for time series prediction is to make the forecast with...
متن کاملFitting of Count Time Series Models on the Number of Patients Referred to Addiction Treatment Centers in Semnan County
Abstract. Count data over time are observed in many application areas. Many researchers use time series patterns to analyze this data. In this paper, the poisson count time series linear models and negative binomials on this type of data with the explanatory variables are studied. The Likelihood analysis and the evaluation of count time series model based on generalized linear models are pres...
متن کاملModeling Gasoline Consumption Behaviors in Iran Based on Long Memory and Regime Change
In this study, for the first time, we model gasoline consumption behavior in Iran using the long-term memory model of the autoregressive fractionally integrated moving average and non-linear Markov-Switching regime change model. Initially, the long-term memory feature of the ARFIMA model is investigated using the data from 1927 to 2017. The results indicate that the time series studied has a lo...
متن کاملپیشبینی خشکسالی هیدرولوژیک با استفاده از سریهای زمانی
INTRODUCTION Hydrologic drought in the sense of deficient river flow is defined as the periods that river flow does not meet the needs of planned programs for system management. Drought is generally considered as periods with insignificant precipitation, soil moisture and water resources for sustaining and supplying the socioeconomic activities of a region. Thus, it is difficult to give a univ...
متن کامل